

PPCR

(Polipropileno Copolimero Random)

* Direitos autorais reservados à TF sob o N° 515.497 - TOPFUSIÓN INDÚSTRIA DE TUBOS E CONEXÕES LTDA.

TOPAIR	LINHA AR COMPRIMIDO	
Introdução		02
Redes de distribuição de ar comp	imido	03
Teste de prova de ductibilidade		07
Instalação de rede		80
Como fazer uma termofusão		09
Como instalar uma derivação		11
Proteção contra radiação solar		12
Como realizar uma aplicação de s	uporte / Diâmetro e distância das buchas dos suportes	13
Como realizar uma aplicação de p	resilha	14
Instalações aéreas		14
Comparativo de tubulações TOPF	USIÓN com tubos galvanizados	16
Tabela para determinar diâmetro e	externo da tubulação TOPAIR	16
Linha de produtos TOPAIR		18

Rev. 08

Linha **TOPAIR** exclusiva para redes de ar comprimido, uma solução limpa para uma energia limpa.

Os tubos e conexões em PPR (polipropileno copolímero random) são usados e recomendados universalmente para a instalação de redes de ar comprimido.

A partir desta realidade, a TOPFUSIÓN iniciou intensas pesquisas, confirmando as vantagens da utilização deste plástico de engenharia, para tal finalidade.

A eliminação de vazamentos e de corrosão (ferrugem), entre outras vantagens, faz com que as redes de ar comprimido, sejam cada vez mais realizadas com estes materiais.

Não tendo dúvidas do futuro destas tubulações, a TOPFUSIÓN começou a fabricar os tubos e conexões na cor exigida pela Norma ABNT 6493: azul 2.5 PB 4/10 do sistema Munsell e a desenvolver conexões específicas para este sistema.

Certificada pela Norma ISO 9001, a TOPFUSION, pioneira na fabricação e comercialização do sistema para o segmento no Brasil, continua com aperfeiçoamento constante e novos desenvolvimentos.

Atualmente, dispõe de tubulações e respectivas conexões em diâmetros de 20 a 160 mm, com fabricação 100% nacional.

REDES DE DISTRIBUIÇÃO DE AR COMPRIMIDO

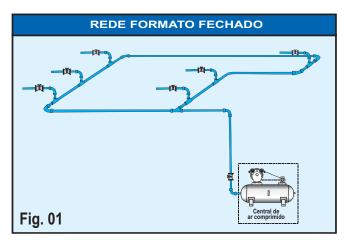
A rede de distribuição tem por finalidade fornecer aos pontos de consumo, ar comprimido em quantidade e qualidade correta à pressão adequada, ao menor custo possível.

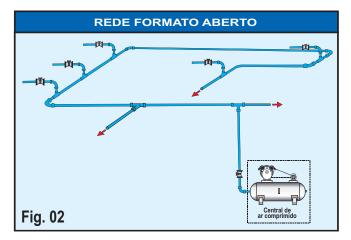
A rede de distribuição, como toda parte do sistema é de vital importância e a TOPFUSIÓN dedica-se à fabricação de tubos e conexões para uma instalação eficiente e econômica.

O sistema**TOPAIR** para redes de ar comprimido é o mais completo com conexões exclusivas, como curvas em todos os diâmetros que diminuem em 80% as perdas de carga comparadas com joelhos.

Não existe norma para as instalações de redes de ar comprimido, a NR 13 do Ministério do Trabalho, trata dos vasos de pressão; O Anexo III esclarece onde deve e onde não deve ser aplicada esta Norma.

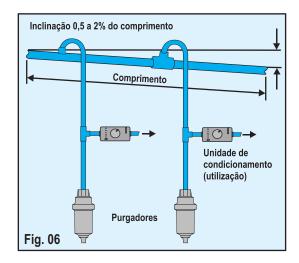
Artigo 2 - Esta NR não se aplica aos seguintes equipamentos: dutos e tubulações para condução de fluido.

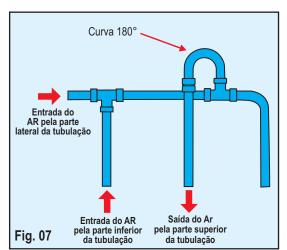

Formato da rede


As redes de ar comprimido são instaladas basicamente em dois formatos, em circuito fechado, formando um anel, ou em formato aberto.

As duas formas de instalação têm suas vantagens e seus inconvenientes.

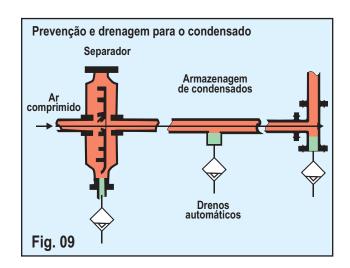
A instalação em anel fechado mantém mais estável a pressão em toda a rede, quando o consumo aumenta em determinado ponto.


Havendo a necessidade de alimentar um ponto mais isolado, é melhor instalar uma linha única, ou seja, em formato aberto.



As redes terão uma inclinação da ordem de 0,5 a 2% no sentido do fluxo, para facilitar o escoamento de água condensada que por ventura tenha ficado na linha.

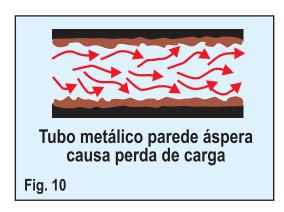
No ponto mais baixo, devera ser colocado um dreno manual ou eletrônico para purgar este condensado. Em redes abertas com comprimento de tubulações muito extensas, recomenda-se colocar purgadores a cada 20 ou 30 metros.

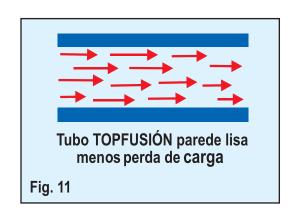


A alimentação do ar para a rede pode ser feito pela parte lateral ou inferior da linha. A saída do condensado, também deve ser feita pela parte inferior da tubulação.

A alimentação dos pontos de consumo deverá ser feita sempre pela parte superior da rede, para evitar que o fluxo do ar arraste água do condensado que, por ventura, exista na rede.

Para instalações de pequeno porte, onde não exista um tratamento de maior qualidade (sem secadores), a TOPFUSIÓN desenvolveu um separador de umidade (patente requerida), construído totalmente em material polimérico de longa vida, que por não ter elementos metálicos, não enferruja.


Como já mencionado, a perda de carga é a perda de energia, o que encarece o custo do ar comprimido.


Sempre teremos perda de carga, seja pelo atrito do ar contra as paredes das tubulações e pelo comprimento da mesma, seja nas mudanças de direção, nas singularidades (curvas, tes, joelhos, uniões, válvulas). Por estas razões, devemos minimizá-las.

A queda de pressão (perda de carga) aceitável, não deve ultrapassar de 0,1 bares desde a instalação do compressor até o ponto de consumo mais distante do mesmo.

A perda de carga é a perda de energia com o consequente aumento de custo, e sempre existirá, mas podemos minimizá-la, levando em conta algumas recomendações:

O sistema **TOPAIR** com paredes internas muito lisas, ajudam a diminuir as perdas de carga por atrito.

O diâmetro da tubulação por exemplo, aumentado-se 10% do valor calculado, irá diminuir em 32% a perda de carga.

Nas singularidades (conexões) utilizadas para as mudanças de direção, se colocarmos uma curva no lugar de um joelho, teremos uma perda de carga cinco vezes menor.

O sistema **TOPAIR** para ar comprimido têm resolvido os principais problemas existentes em redes convencionais.

Os vazamentos nas redes de ar comprimido são a maior causa de desperdício da energia limpa, porém de alto custo.

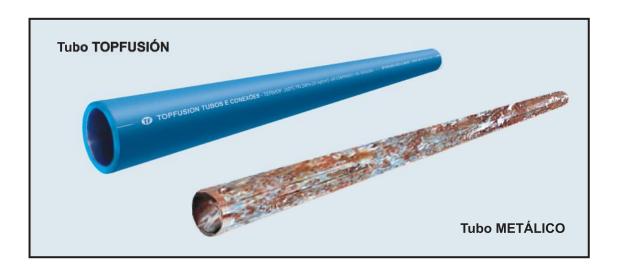
O custo de um sistema de ar comprimido é afetado diretamente pelo consumo de energia elétrica e representa, ao longo de um período de 10 anos, em 76% do custo global.

A norma permite até 5% da capacidade instalada como valor máximo do vazamento. Porém este valor vai aumentando com o passar do tempo e pode chegar a 30%, o que representa uma conta de energia elétrica muito alta.

As perdas por vazamento não são notadas no dia-a-dia, somente no silêncio de parada de máquinas é que se manifestam.

Para quantificar este problema, daremos um exemplo:

Um furo de 3mm de diâmetro em uma tubulação de ar comprimido que trabalha a 6 bar de pressão, provoca uma perda de energia que equivale a 40 lâmpadas de 100 W acessas de forma contínua. Certamente alguém se espantaria se num dia ensolarado encontrasse essa quantidade de lâmpadas acessas; porém as perdas por vazamentos podem ser muito maiores e não são observadas.


O volume dos vazamentos está relacionado com a pressão de alimentação e, aumenta cada vez mais, na medida em que for necessário aumento da pressão para compensá-lo.

É comum, que com a queda de pressão, devido a vazamentos, a primeira medida a adotar-se seja um ajuste na descarga do compressor para uma pressão mais alta. O aumento de 1 bar na pressão de descarga, representa de 6 a 10% no aumento de potência do motor do compressor, considerando a pressão de 6 a 7 bar. Com isto, aumentamos os vazamentos, as despesas com energia e os custos.

Outro diferencial do sistema **TOPAIR** com as tubulações metálicas, é a total ausência de ferrugem que mais cedo ou mais tarde forma-se no seu interior, em especial na região das roscas de união entre tubos. Formada pela umidade que sempre vem no fluxo de ar, mesmo que tratado, esta ferrugem origina dois graves problemas nas redes de ar comprimido.

A primeira é que a ferrugem arrastada pelo fluxo de ar irá se depositar em válvulas e outros equipamentos, originando paradas não programadas de manutenção e a consequente perda de produtividade.

A ferrugem também aumenta a rugosidade interna dos tubos, aumentado assim sua perda de carga.

Originalmente a rugosidade interna das tubulações TOPFUSIÓN é de duas a três vezes menores que a metálica.

A resistência a agentes químicos evita que sejam atacados pelos óleos provenientes dos compressores.

O peso das tubulações TOPFUSIÓN é 30% do equivalente metálico, diminuindo a necessidade de suportes mais resistentes.

A cor azul, de acordo com a norma ABNT 6493, além de economizar na operação e manutenção de pintura, proporciona uma boa estética às instalações de ar comprimido.

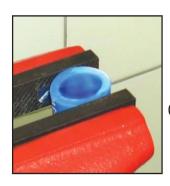
A ductibilidade do sistema **TOPAIR** são outro ponto forte, a seguir é mostrada uma sequência de fotografias de um teste desta propriedade.

TESTE DE PROVA DE DUCTIBILIDADE

01) Corpo de prova;

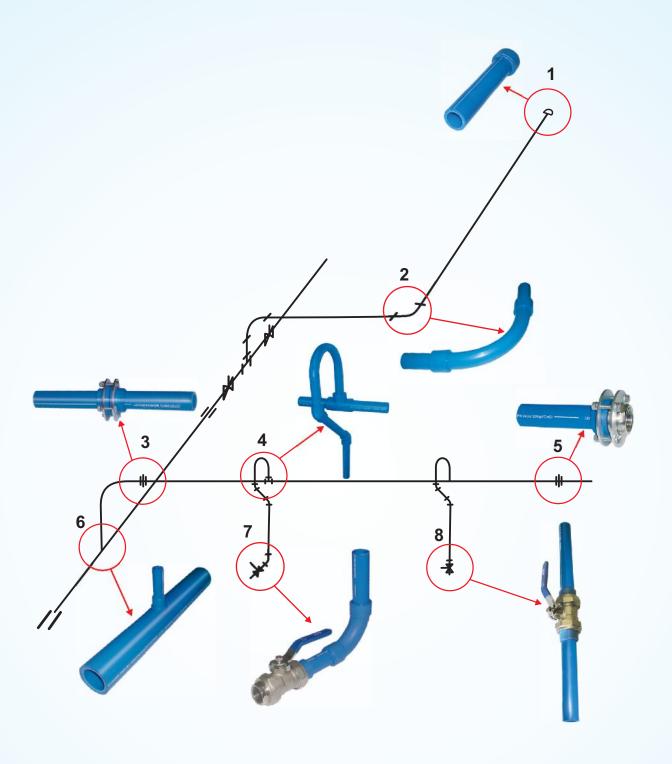
02) Início do teste;

03) Corpo de prova sofrendo pressão;


04) Aplicando mais pressão;

05) Corpo de prova com pressão máxima, sem apresentar nenhuma ruptura ou fissuras (trincas);

06) Corpo de prova depois do teste;


07) Tentando levar o corpo de prova ao seu estado original;

08) Estado do corpo de prova no final do teste de Ductibilidade.

TA	TABELA DE VAZAMENTO X PERDA DE POTÊNCIA							
Ø do furo em mm	Área em mm²	m²/min a 6 bar	Pcm	НР	Kw	w		
1	0,7854	0,0630	2,224824	0,556206	0,414763	425		
2	3,1416	0,2520	8,899297	2,224824	1,659051	1.659		
3	7,0686	0,5670	20,02352	5,005854	3,732866	3.733		
5	19,635	1,5750	55,62061	13,90515	10,36907	10.369		
8	50,2656	4,0320	142,3887	35,59719	26,54482	26.545		
9	63,6174	5,1030	180,2108	45,05269	33,50579	33,596		
10	78,54	6,3000	222,4824	55,62061	41,47629	41.476		
12	113,0976	9,0720	320,3747	80,09367	59,72585	59.726		

INSTALAÇÃO DE REDE

Legenda:

- 1 Cap
- 2 Curva longa
- 3 União c/flange
- 4 Curva 180°

- 5 Uníão mista c/flange
- 6 Derivação de ramal
- 7 Registro esfera/curva
- 8 Registro esfera

COMO FAZER UMA TERMOFUSÃO

Os tubos e conexões TOPFUSIÓN se unem através de termofusão a 260°C, transformando a rede em uma peça única, o que garante a eliminação de vazamentos. Esta operação muito simples de fazer é mostrada, passo a passo, asseguir.

01 Cortar com a tesoura apropriada para obter um corte perpendicular ao eixo do tubo;

12 Marcar no extremo do tubo os centímetros que serão introduzidos na bolsa térmica ou observar a marcação do encosto no fundo da bolsa;

03 Após a termofusora atingir a temperatura de trabalho, introduzir ao mesmo tempo nos terminais térmicos o tubo e a conexão;

Baténte Corte de orientação

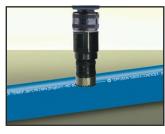
- **14** A conexão deve chegar ao batente e ao tubo na marca (corte de orientação), ou na marcação do encosto. Aguardar o tempo de aquecimento de acordo com a bitola, conforme tabela tempo de aquecimento;
- **05** Concluído o tempo de aquecimento, retirar o tubo e a conexão dos terminais térmicos macho e fêmea:

COMO FAZER UMA TERMOFUSÃO

06 Introduzir o tubo imediatamente na conexão de forma contínua até o batente;

07 Por 3 segundos ainda é possível ajustar o posicionamento da conexão, com um giro máximo de mais ou menos 15°;

08 Observar que para uma boa termofusão, deverá formar-se dois anéis ao término da união. Deixar esfriar de acordo com a tabela de tempo, sem forçar as partes unidas;



09 Deixar sempre a termofusora no seu suporte para evitar possibilidade de acidentes quando não estiver sendo utilizada.

TABELA DE TEMPO E PROFUNDIDADE DE INSERÇÃO						
Diâmetro do tubo	Tempo em	segundos	Cura am			
e da conexão	Aquecimento*	Acoplamento (montagem)	Cura em minutos	Profundidade de inserção em mm		
20	5	4	2	12,2		
25	7	4	2	13		
32	8	6	4	14,5		
40	12	6	4	16		
50	18	6	4	18		
63	24	8	6	24		
75	30	10	8	26		
90	40	15	8	29		
110	50	20	8	32,5		
160	70	40	12	43		

Dimensões em milímetros (mm) – Tempo em segundos (s). *Aumentar 50% o tempo de aquecimento quando a temperatura ambiente < 10 °C.

COMO INSTALAR UMA DERIVAÇÃO

01 Faça a furação do tubo da linha principal (50 e 90 mm) com uma serra de diâmentro 32 mm (1" 1/4);

02 Para facilitar esta operação, sugerimos deixar a tarja dos tubos para cima na montagem da rede;

03 Com os bocais apropriados para a operação, colocar a termofusora sobre perfuração do tubo por um tempo de 15 segundos;

Após o aquecimento do tubo, inserir a derivação no outro bocal e aquecer por 20 segundos. Sem retirar a termofusora do tubo. Tempos de aquecimento total: tubo = 35 segundos derivação = 20 segundos;

05 Retirar a termofusora e aplicar a derivação no tubo;

Pressione firme a derivação, verificando sua perpendicularidade com o tubo. É importante que a derivação seja pressionada ao tubo por aproximadamente 1 minuto;

07 A derivação está pronta para receber o tubo de saída;

08 Deixar sempre a termofusora no seu suporte para evitar possibilidade de acidentes quando não estiver sendo utilizada.

Obs.: Derivações de rede nas bitolas de 50 a 160mm*.

*Para tubulação de 110 e 160mm, deve ser utilizado a Derivação de 90mm.

A TOPFUSIÓN tem a preocupação de facilitar o trabalho do instalador, sem diminuir a qualidade total da obra.

Em uma rede, a linha principal (linha tronco) e de 50 mm ou maior, as saídas para os pontos de consumo podem ser feitas com uma *derivação de rede*, como já mostrado. Esta conexão também pode ser utilizada para realizar uma nova saída para um ponto de consumo não previsto, sem necessidade de desmontar a rede.

Quando a linha principal é realizada com tubulações de 40 mm ou menor, as saídas para os pontos de consumo deverão ser feitas com conexões "T" e buchas de redução.

Os *registros de esfera*, com saídas para termofusão, eliminam a utilização de adaptadores e são de extrema facilidade em casos de manutenção.

Também os registros de esfera mistos, onde uma saída é para termofusão e a outra um flange metálico rosqueado, tornam-se muito úteis para a instalação de equipamentos ou o acoplamento com tubulações metálicas.

PROTEÇÃO CONTRA RADIAÇÃO SOLAR

O sistema **TOPAIR** não devem ser exposto diretamente à luz solar, porque as radiações ultravioletas (UV) quebram as cadeias moleculares, encurtando a vida útil do produto. Se em uma instalação interna as tubulações podem durar mais de 50 anos, este tempo pode reduzir a 6 ou 8 anos se expostos diretamente ao sol.

Qualquer barreira entre os tubos e o sol é suficiente para eliminar o problema: fitas de alumínio, calhas podem ser utilizadas.

Para resolver este problema, a TOPFUSIÓN disponibiliza uma fita protetora que deverá ser usada em situações onde a instalação ficará exposta a luz solar. Esta fita deverá ser enrolada sobre os tubos e conexões, ficando estes totalmente cobertos.

RENDIMENTO DO ROLO DE 50 M DE FITA DE PROTEÇÃO EM FUNÇÃO DO DIÂMETRO DA TUBULAÇÃO A SER PROTEGIDA										
BITOLA TUBO (mm)	20	25	32	40	50	63	75	90	110	160
N° DE TUBO PROTEGIDO (pç)	13	10	8,5	6,5	5	4,3	3,5	3	2,5	1

COMO REALIZAR UMA APLICAÇÃO DE SUPORTE

O PPR possui característica intrínseca, tendo maior flexibilidade (maior que os tubos galvanizados) e exigem uma fixação de distâncias menores que as tubulações metálicas.

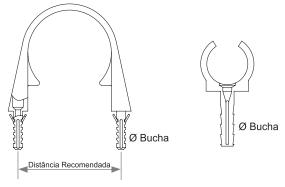
	DISTÂNCIA ENTRE SUPORTE E PRESILHA EM CENTÍMETROS PARA DIFERENTE TEMPERATURAS E DIÂMETROS									
PAR	A DIFE	KEN	IE IE	MPE	KAIU	RAS I	E DIA	MEIL	रण्ड	
Ø do tubo	20	25	32	40	50	63	75	90	110	160
20°C	50	55	70	70	80	90	120	120	140	160
30°C	50	55	65	65	80	90	110	110	130	150
40°C	45	50	60	60	75	85	105	105	120	135
50°C	45	50	60	60	75	85	100	100	120	130
60°C	45	50	55	60	70	80	90	95	110	120
70°C	40	45	50	55	65	75	85	90	110	120
80°C	40	40	50	50	60	70	80	80	100	110

Na tabela apresentam-se essas distâncias em centímetros, com duas variáveis: diâmetro do tubo e temperatura ambiente, onde as tubulações serão instaladas.

O sistema possui suportes fixos e deslizantes, presilhas que se termofusionam aos tubos para usar cabos de aço e seu alinhamento.

Quando ocorrer de os vãos serem grandes e não existir a possibilidade de uma fixação de tipo braçadeira, a TOPFUSIÓN desenvolveu uma presilha que termofusionada ao tubo permite a utilização de dois cabos de aço: um que alinha a tubulação em sentido longitudinal e outro que em forma de pendurais que o alinha no sentido horizontal.

Esta presilha dispõe ainda de duas entradas laterais, para serem guiadas em eletro-calha de 38 x 38 mm (1 1/2" x 1 ½").

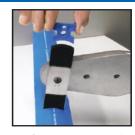

A distância entre as presilhas deve seguir a indicação da tabela acima.

DIÂMETRO E DISTÂNCIA DAS BUCHAS DOS SUPORTES

SUPORTE FIXO						
Suporte	Distância Recomendada	Ø Bucha*				
20	31	5				
25	37	5				
32	44	7				
40	58	8				
50	67	8				
63	78	8				
75	88	10				
90	116	12				
110	130	12				

^{*}Para auxiliar na escolha do parafuso.

SUPORTE DESLIZANTE					
Suporte	Ø Bucha*				
20	5				
25	5				
32	7				


COMO REALIZAR UMA APLICAÇÃO DE PRESILHA

01) A presilha é termofusionada no tubo, formando com este, um conjunto solidário. Para esta operação utiliza-se um "dispositivo de presilha" montado na termofusora;

03) Depois de transcorridos aproximadamente 10 segundos retira-se a termofusora e pressiona-se a presilha contra o tubo;

02) Quando a termofusora chegar à temperatura de operação (260°C), coloca-se a parte côncava do dispositivo de presilha sobre o tubo, e sobre a parte convexa coloca-se presilha;

04) A presilha tem no centro (debaixo dos furos), uma marca de orientação que deverá coincidir com a tarja branca do tubo. Isto deixará as presilhas alinhadas.

Os dispositivos de presilhas, assim como as presilhas são feito de acordo com cada diâmetro de tubo, e são disponíveis para tubos de 50, 63, 75 e 90 mm.

INSTALAÇÕES AÉREAS

Para as instalações aéreas, em especial as tubulações para redes de ar comprimido, são aproveitados os leitos das instalações elétricas (eletro calhas), para a montagem das redes, ou são colocados suportes junto às paredes.

Quando as redes são instaladas em grandes vãos, sem ter como auxiliar-se de outras instalações, temos que recorrer a soluções alternativas.

As vantagens incontestáveis do sistema **TOPFIR** nas redes de ar comprimido, comparadas com as tubulações metálicas, não devem ser menosprezadas pelo fato de sua flexibilidade exigir elementos assessórios de instalação.

ATOPFUSIÓN tem desenvolvido várias soluções para eliminar esses problemas.

Presilha (Fig. 01): Esta peça, injetada em PPR, é termofusionada sobre o tubo (Fig. 02) à distâncias de acordo com a tabela de espaçamentos localizada na página 13.

Os raios de curvaturas das presilhas (Fig. 03) correspondem aos diferentes diâmetros dos tubos.

O furo central superior (Ø 5,8) permite ancorar, pendurar à estrutura do galpão para nivelamento da rede.

O furo central inferior (Ø 7,5) permite a passagem de um cabo de aço para alinhamento (Fig. 04).

Fig. 01

Fig. 02

As entradas laterais são encaixes para uso em eletrocalhas de 38 mm.

As eletrocalhas podem estar penduradas por cabos de aço, barras rosqueadas ou outros tipos de sustentação (Fig. 05).

Fig. 04

Fig. 05

As tubulações podem ficar por baixo ou por cima da eletrocalha dependendo das necessidades da instalação (Fig. 06 e 07).

Fig. 06

Fig. 07

Os suportes para a eletrocalha (Fig. 08 e 09) podem ser colocados a distâncias bem maiores.

Fig. 08

Suportes múltiplos: São usados quando várias tubulações do mesmo ou de diferentes diâmetros são instalados juntos, ou quando instalados em suporte feito de um perfil cantoneira, ao qual se fixam abraçadeiras já fabricadas pela TOPFUSIÓN (Fig. 10, 11 e 12).

Fig. 11

As cantoneiras são penduradas por cabos de aço (Fig.13). As distâncias entre os suportes devem obedecer à tabela técnica (ver página 13).

Fig. 10

Fig. 12

Fig. 13

Concluindo este Manual Técnico, incluímos uma série de tabelas de orientação para determinar o diâmetro da rede principal, levando em conta três variáveis:

- Pressão de trabalho em bar;
- Comprimento em metros da rede principal;
- Capacidade instalada em pe³/m (cfm) ou m³/h.

COMPARATIVO DE TUBULAÇÕES TOPFUSIÓN COM TUBOS GALVANIZADOS					
20 mm - ½" 40 mm - 1¼" 75 mm - 2½" 160 mm - 6"	25 mm - ¾" 50 mm - 1½" 90 mm - 3"	32 mm - 1" 63 mm - 2" 110 mm - 4"			

TABELA PARA DETERMINAR DIÂMETRO EXTERNO DA TUBULAÇÃO TOPAIR

VAZÃO		DI	DISTÂNCIA ENTRE O COMPRESSOR E O PONTO MAIS DISTANTE DA REDE								
VAZ	.AU	25 m	50 m	100 m	150 m	200 m	300 m	400 m	500 m	750 m	1.000 m
M³/h	Pcm	82 ft	164 ft	328 ft	492 ft	656 ft	984 ft	1.312 ft	1.640 ft	2.460 ft	3.280 ft
14	8	20	20	25	25	25	32	32	32	32	40
39	23	20	25	25	32	32	32	40	40	40	50
54	32	25	25	32	32	40	40	50	50	50	50
72	42	25	32	40	40	40	50	50	50	50	63
105	62	32	40	40	50	50	50	63	63	63	63
120	71	32	40	40	50	50	63	63	63	63	75
150	88	40	40	50	50	63	63	63	75	75	75
180	106	40	50	50	63	63	63	75	75	75	90
210	124	40	50	50	63	63	75	75	75	90	90
270	159	50	50	63	63	75	75	75	90	90	90
360	212	50	63	63	75	75	75	90	90	110	110
420	247	50	63	75	75	75	90	90	110	110	110
510	300	63	63	75	90	90	90	110	110	110	110
720	424	63	75	90	90	90	110	110	110	110	160
900	530	75	75	90	90	110	110	110	110	160	160
1.080	636	75	90	90	110	110	110	110	160	160	160
1.260	742	75	90	110	110	110	110	160	160	160	160
1.560	918	90	110	110	110	110	160	160	160	160	160
1.860	1.095	90	110	110	110	110	160	160	160	160	160
1.980	1.165	90	110	110	110	160	160	160	160	160	160

Ø Ext. Tubo (TOPFUSIÓN)	Ø Int. Tubo (Cálculo)
20	14,4
25	18,0
32	23,0
40	28,8
50	36,2
63	45,6
75	54,2
90	65,0
110	79,8
160	116,2


Obs.: Alguns cálculos podem indicar qual o diâmetro da tubulação em função da pressão, vazão e comprimento da rede. Normalmente esse cálculo resulta no diâmentro interno da tubulação, por tanto para comparar com a tabela TOPFUSIÓN, devemos usar a tabela ao lado para fazer a conversão (ø externo x ø interno).

	Código	Diâmetro mm	Espessura mm	PN kgf/cm²	Comp. m
	TU202003A	20	2,8	20	3
0	TU252003A	25	3,5	20	3
COMPRIMIDO	TU322003A	32	4,4	20	3
\leq	TU402003A	40	5,5	20	3
<u>F</u>	TU502003A	50	6,9	20	3
2	TU632003A	63	8,6	20	3
	TU752003A	75	10,3	20	3
AR	TU902003A	90	12,3	20	3
	TU1102003A	110	15,1	20	3
	TU1602006A	160	21,9	20	6

Obs.: as conexões são PN 25

ADAPTADOR

Código	mm
AD20120A	20 x ½
AD25120A	25 x ½
AD25340A	25 x 3/4
AD32340A	32 x ¾
AD32010A	32 x 1
AD40114A	40 x 1.1/4
AD50112A	50 x 1.½
AD63020A	63 x 2
AD75212A	75 x 2.½
AD90030A	90 x 3
AD11004A	110 x 4
AD16006A	160 x 6

ADAPTADOR REG. ESFERA

Código	Diâmetro mm
ADR200A	20
ADR250A	25
ADR320A	32
ADR400A	40
ADR500A	50
ADR630A	63
ADR750A	75
ADR900A	90
ADR1100A	110

BASTÃO REPARO	Código	Diâmetro mm
	REP08A	8
The second secon		

BUCHA DE REDUÇÃO

Código	Diâmetro mm
BU2520A	25 x 20
BU3220A	32 x 20
BU3225A	32 x 25
BU4025A	40 x 25
BU4032A	40 x 32
BU5025A	50 x 25
BU5032A	50 x 32
BU5040A	50 x 40
BU6325A	63 x 25
BU6332A	63 x 32
BU6340A	63 x 40
BU6350A	63 x 50
BU7563A	75 x 63
BU9075A	90 x 75
BU11063A	110 x 63
BU11090A	110 x 90
BU160110A	160 x 110

CAP

Código	Diâmetro mm
CP200A	20
CP250A	25
CP320A	32
CP400A	40
CP500A	50
CP630A	63
CP750A	75
CP900A	90
CP1100A	110
CP1600A	160

CONJ. FLANGE PADRÃO ANSI

Código	Diametro mm
CFA50150A	50
CFA63150A 	63 75
CFA90150A	90
CFA110150A	110
CFA160150A	160

Obs.: 150 lbs.

CURVA 180°

Código	Diâmetro mm
CU200A	20
CU250A	25
CU320A	32

CURVA 90° CURTA

Código	Diâmetro mm
CR200A	20
CR250A	25
CR320A	32

CURVA 90°

Código	Diâmetro mm
CR400A	40
CR500A	50
CR630A	63
CR750A	75
CR900A	90
CR1100A	110

CURVA SOBREPASSO

Código	Diâmetro mm
CS200A	20
CS250A	25
CS320A	32

Diâmetro

DERIVAÇÃO DE RAMAL

	Coulgo	mm
	DR5025A	50 x 25
	DR5032A	50 x 32
	DR6325A	63 x 25
	DR6332A	63 x 32
	DR7525A	75 x 25
	DR7532A	75 x 32
	DR9025A	90 x 25
	DR9032 A	90 x 32
١.		

Obs.: Para tubulação de 110 e 160mm, deve ser utilizado a Derivação de 90mm.

JOELHO 45°

Código	Diâmetro mm
JO205A	20
JO255A	25
JO325A	32
JO405A	40
JO505A	50
JO635A	63
JO755A	75
JO905A	90
JO1105A	110
JO1605A	160

JOELHO 90°

Código	Diâmetro mm
JO200A	20
JO250A	25
JO320A	32
JO400A	40
JO500A	50
JO630A	63
JO750A	75
JO900A	90
JO1100A	110
JO1600A	160

JOELHO 90° MACHO

Diâmetro mm
20 x ½
25 x ¾

JOELHO MISTO 90°

Código	Diâmetro mm
JM20120A	20 x ½
JM25120A	25 x ½
JM25340A	25 x ¾
JM32010A	32 x 1

JOELHO REDUÇÃO 90°

Código	Diâmetro mm
JR25200A	25 x 20

LUVA

Código	Diâmetro mm
LU200A	20
LU250A	25
LU320A	32
LU400A	40
LU500A	50
LU630A	63
LU750A	75
LU900A	90
LU1100A	110
LU1600A	160

LUVA MISTA

Código	Diâmetro mm
LM20120A	20 x ½
LM25120A	25 x ½
LM25340A	25 x ¾
LM32340A	32 x ³ ⁄ ₄
LM32010A	32 x 1
LM40114A	40 x 1.1/4
LM50112A	50 x 1.½
LM63020A	63 x 2
LM75212A	75 x 2.½
LM90030A	90 x 3
LM11004A	110 x 4
LM16006A	160 x 6

PRESILHA

Código	Diâmetro mm
PRE50A	50
PRE63A	63
PRE75A	75
PRE90A	90

* Patente PI1101448-2

REGISTRO ESFERA

Código	Diâmetro mm
RES200A	20
RES250A	25
RES320A	32
RES400A	40
RES500A	50
RES630A	63
RES750A	75
RES900A	90
RES1100A	110

REGISTRO ESFERA MISTO

Diâmetro mm
20 x ½
25 x ¾
32 x 1
40 x 1.1/4
50 x 1.½
63 x 2
75 x 2.½
90 x 3
110 x 4

SEPARADOR DE UMIDADE

Código	Diâmetro mm
SU25340A	3/4" X 3/4" X 1/2"
SU32010A	1" x 1" x ½"
SU320A	32 x 32 x ½"
SU63020A	2" x 2" x ½"
SU630A	63 x 63 x ½"

Patente MU8903087-7

Obs.: 32/63 termofusão. Saídas para purgas em rosca ½".

SUPORTE DESLIZANTE

Código	Diâmetro mm
SD20A	20
SD25A	25
SD32A	32

SUPORTE FIXO

Código	mm
SF20A	20
SF25A	25
SF32A	32
SF40A	40
SF50A	50
SF63A	63
SF75A	75
SF90A	90
SF110A	110

ΤE

Código	Diâmetro mm
TE200A	20
TE250A	25
TE320A	32
TE400A	40
TE500A	50
TE630A	63
TE750A	75
TE900A	90
TE1100A	110
TE1600A	160

TE MACHO

Código	Diâmetro mm
TM20120A	20 x ½
TM25340A	25 x 3⁄4

TE MISTO

Código	Diâmetro mm
TF20120A	20 x ½
TF25120A	25 x ½
TF25340A	25 x ³ ⁄ ₄
TF32010A	32 x 1

TE REDUÇÃO

Código	Diâmetro mm
TR25200A	25 x 20
TR32250A	32 x 25
TR40320A	40 x 32
TR110630A	110 x 63

TE Y

Código	Diâmetro mm
TY250A	25

UNIÃO C/ FLANGE

Código	Diâmetro mm
UNF200A	20
UNF250A	25
UNF320A	32
UNF400A	40
UNF500A	50
UNF630A	63
UNF750A	75
UNF900A	90
UNF1100A	110
UNF1600A	160

UNIÃO MISTA C/ FLANGE

Código	Diâmetro mm
UMF20120A	20 x ½
UMF25340A	25 x ¾
UMF32010A	32 x 1
UMF40114A	40 x 1.1/4
UMF50112A	50 x 1.½
UMF63020A	63 x 2
UMF75212A	75 x 2.½
UMF90030A	90 x 3
UMF11004A	110 x 4

VÁLVULA BORBOLETA

Código	Diâmetro mm
VB750A	75
VB900A	90
VB1100A	110
VB1600A	160

